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a b s t r a c t

A detailed theoretical investigation into the first- and second-mode response of a

parametrically excited slender cantilever beam, where, the narrow-band random

excitation characters are taken into consideration, is presented. The method of multiple

scales is used to determine a uniform first-order expansion of the solution of the

force–response data (curves) of a specimen beam tested by other investigators are

obtained. Further comparisons have been made and results show that whether the first-

order moment frequency–response data (curves) or the first-order moment force–

response data (curves) of the first two modes are all in agreement with other

investigators’ experimental results. Furthermore, the stochastic jump and bifurcation

have been investigated for the first modal parametric principal resonance by using the

stationary joint probability of amplitude and phase. Results show that stochastic jump

occurs mainly in the region of triple-valued solution. For the frequency–response

domain, if the bandwidth g is a variable and others keep constant, the basic phenomena

indicate that the most probable motion is around the higher branch when the

bandwidth is smaller, whereas the most probable motion gradually approaches the

lower one when the bandwidth becomes higher; if the excitation central frequency f is a

variable and others keep constant, the basic phenomena imply that the higher is f, the

more probable is the jump from the higher branch to the lower one once f exceeds an

certain value. For the force–response domain, there is a region of excitation acceleration

a within which the joint probability density has two peaks: an upper peak and a lower

peak. Results show that the upper peak decreases while the lower peak increases as the

value of a decreases.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Slender beams subject to base excitation can find application in the modeling of many engineering fields such as tall
buildings, robotic manipulators, components of high-speed machinery, pole masts, accelerating missiles, appendages of
aircrafts, spacecrafts or even vehicles, etc. Hence, great attention has been paid to the nonlinear dynamics of beams subject
to axially base excitation in a number of technical papers over the past few decades due to both theoretic and practical
demands.
All rights reserved.

x: +86 512 67165607.

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.04.014
mailto:zhfeng@suda.edu.cn


ARTICLE IN PRESS

Z.H. Feng et al. / Journal of Sound and Vibration 325 (2009) 923–937924
By taking the nonlinear inertia terms into account and considering linear curvature in the differential equations of
motion, Haight and King [1] obtained the planar frequency–response curves of a parametrically excited rod by means
of averaging method. Evensen and Even-Iwanowski [2] and Nayfeh and Mook [3] investigated the nonlinear dynamics of
beams only by taking the nonlinear inertia and stretching terms into consideration. Crespo da Silva and Glynn [4,5] derived
a set of integro-partial-differential equations governing flexural–flexural–torsional motions of inextensional beams,
including geometric and inertia nonlinearities. Their results showed that the generally neglected nonlinear terms due to
curvature are of the same order as the nonlinear terms due to inertia and that the curvature terms may have a significant
influence on the response of the system. Moreover, they used these equations to study nonplanar oscillations of a cantilever
beam with asymmetric support conditions [6]. Crespo da Silva [7] developed equations governing flexural–flexural–
torsional beams, including geometric and inertia nonlinearities and used these equation to investigate the nonlinear
response of an extensional beam to a primary resonant excitation [8]. Nayfeh and Pai [9] and Pai and Nayfeh [10] used the
equation of motion formulated in Ref. [4] to analyze the nonlinear vibration of a cantilever beam subject to principal
parametric and primary excitations and found that the geometric nonlinear terms have a hardening effect, whereas the
inertia terms have a softening effect. Their results also indicated that for the first mode the effective nonlinearity is of the
hardening type, whereas for the second and higher modes the effective nonlinearity is of the softening type [9]. Arafat et al.
[11] showed that the equations of motion in Ref. [4] can be derived by using Hamilton’s extended principle from a
Lagrangian and virtual work term. In order to verify some theoretical results aforementioned, Anderson et al. [12]
experimentally investigated the only planar response of a parametrically excited slender inextensional cantilever beam
based on the analytical model in Ref. [4]. Their study showed that the experimental and theoretical results are in
agreement on both the frequency–response and force–response curves of the first two modes when the damping was
composed of linear viscous and quadratic terms. Zavodney and Nayfeh [13] derived the nonlinear partial differential
equation for a slender cantilever beam carrying a lumped mass at an arbitrary position. They compared the resulting
planner version of the equations with those in Ref. [4] and found no difference between these two modeling methods.
Following the equation of motion of the beam described in Ref. [13], Kar and Dwivedy [14] and Dwivedy and Kar [15–19]
systematically dealt with the nonlinear dynamic behaviors of a slender beam carrying a lumped mass with principal
parametric, combination parametric and internal resonance of the lower modes. Furthermore, Kane et al. [20] presented a
comprehensive theory for dealing with small vibration of a general beam attached to a base undergoing an arbitrary,
prescribed motion based on Kane’s method. Subsequently, Yoo et al. [21] introduced a stretch deformation variable and
developed the modeling results in Ref. [20]. Hyun and Yoo [22] systematically investigated the dynamic stability of the
trivial response of an axially oscillating cantilever beam based on the modeling method in Refs. [20,21]. Especially, Oueini
and Nayfeh [23] considered the problem of suppressing the vibration of a cantilever beam when subjected to a principal
parametric resonance using a nonlinear control law with cubic velocity feedback. Their analysis revealed that cubic velocity
feedback reduces the amplitude of the response and it leads to the elimination of the saddle-node bifurcation in the
frequency- and force-response curves. Also, their theoretical analysis was verified experimentally. Alhazza et al. [24]
presented a comprehensive investigation of the effect of time delays on the nonlinear control of parametrically excited
cantilever beams. Their results showed that, when manifested in the feedback, even the minute amount of delays can
completely alter the behavior and stability of the beam, leading to unexpected behavior and response. Although
investigations on the nonlinear dynamics of beams subject to base excitation have received considerable attention, the
(parametric) excitation to beams aforementioned was mainly restricted to be deterministic and the significance of random
(parametric) excitation, especially narrow-band random (parametric) excitation, has not been highlighted. At least, from
point of engineering view, a pure deterministic excitation is hard to implement.

References to narrow-band random excitation oscillators are few up to now and many related research objects are
mainly concentrated on some classical oscillators such as Duffing oscillator, van der Pol oscillator, Duffing–van der Pol
oscillator [25–33]. Zhu [34] thought that the study of the random parametrically excited systems were more important
than that of random externally excited ones and were more difficult in theory. Huang and Zhu [35] used the stochastic
averaging method and focused on quasi-integrable Hamiltonian systems under combined harmonic and white noise
excitations. They solved the averaged FPK equation by using the finite difference method and also examined the stochastic
jump and its bifurcation as the system parameters change. Similarly, Huang and Zhu [36] used the same method to
investigate the same systems as those in Ref. [35] under bounded noise excitations. They solved the FPK equation by using
the finite difference method and found that the analytical results were in good agreement with those from digital
simulation of original system. Choosing the slender beams as research objects, Feng and Hu [37] studied the almost sure
stability of the trivial response of flexible beams undergoing a large linear motion, in which the system was subject to
narrow-band random parametric excitation with 3:1 internal resonance. Recently, Feng et al. [38] focused on the case
where a slender cantilever beam was subject to axial narrow-band random excitation and investigated the largest
Lyapunov exponent which determines the almost sure stability of the trivial solution, the first- and second-order non-
trivial steady state response when the bandwidth was very small, and the stochastic jump and bifurcation of the first and
second modal parametric principal resonance, of the system for the first time.

In this paper, we base our model on the nonlinear integro-differential equations described in Ref. [4] and extend the
work of Ref. [38]. The method of multiple scales is used to determine a uniform first-order expansion of the solution of
equations. We numerically obtain the first-order moment frequency–response and force–response data (curves) of the
same specimen as that tested in Ref. [12] when the excitation is a narrow-band random one. Further comparisons between
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present numerical data and the experimental results investigated in Ref. [12] have been made. Furthermore, the stochastic
jump and bifurcation have been investigated for the first mode parametric principal resonance by using the stationary joint
probability of amplitude and phase to characterize the number, location, shape and magnitude of the peaks of the
stationary joint probability density.

2. Problem descriptions and analysis

Following Crespo da Silva and Glynn [4], we base our model on the nonlinear integro-differential equations to describe
and investigate the only planar motion of an isotropic inextensible Euler-Bernoulli cantilever beam which is vertically
mounted on a base (for instance, a modal shaker) and shown in Fig. 1, that is

rA €wþ c _wþ EIwiv ¼ �EI½w0ðw0w00Þ0�0

�
1

2
rA w0

Z s

L

q2

qt2

Z s

0
w02 ds

 !
ds

" #0
� rA½w00ðs� LÞ þw0�ð€z� gÞ, (1)

w ¼ w0 ¼ 0 at s ¼ 0 (2a)

w00 ¼ w000 ¼ 0 at s ¼ L, (2b)

where w is the transverse displacement; the primes and overdots indicate the derivative with respect to the arc length s

and time t, respectively; r is the beam density; A is the cross-sectional area; c is the coefficient of linear viscous damping
per unit length; E is Young’s modulus of elasticity; I is the moment of inertia about the neutral axis of the beam; L is the
constrained length of the beam; €z is the parametric excitation acceleration of the base; and g is the gravity acceleration.

Here the beam has been assumed to be weakly nonlinear and retained only up to cubic nonlinearlities.
In most studies of the nonlinear dynamics of aforementioned beams, the base motion is almost the same case, i.e., a

pure harmonic excitation. From the point of theoretical view, such a harmonic excitation assumption is unquestionable so
that it is widely considered and introduced by most investigators. From the point of technical or engineering view, however,
we need to elaborate on the excitation because it is hard for a structure to experience a pure and long-term harmonic
excitation, on other words, such a harmonic excitation assumption needs to be modified more or less. For instance,
Anderson et al. [12] experimentally investigated the planar response of a parametrically excited cantilever beam. They used
a signal generator and a power amplifier to drive a 250 lb modal shaker with a custom table and suspension to allow base
excitation. In order to capture the experimental frequency–response and force–response curves for the first and second
modal principal parametric resonance (within a very narrow frequency extent), the base motion was along the axis of the
beam at constant acceleration amplitude and a fixed frequency (forward sweep or reverse sweep). Results in Figs. 3, 7, 9
and 13 in their research show that the frequency–response curve is a definite overhang, in other words, jumps from the
higher branch (nontrivial) to the lower one (trivial) or from the lower branch to the higher one occur. In order to explain
these phenomena in theory, they assumed that the damping is composed of linear viscous and quadratic terms. Their
research show that adding quadratic damping in the analysis improves qualitatively as well as quantitatively the
agreement between the experimental and theoretical results, which, indeed indicates the rationality from one side to some
extent. On the other hand, however, there exist two discussible problems. At first, adding quadratic damping is only
suitable for the situation where the relative velocity between the moving body and the liquid with weak viscidity is not
lower; in fact, the first two natural frequencies of the beam (test specimen) in Ref. [12] are only about 0.66 and 5.69 Hz,
respectively. Secondly, in the point of technical view, it is very difficult to keep the excitation frequency of the shaker at a
fixed one to experience a long-term excitation. In other words, the excitation frequency will slightly drift off the center
w

s

L

z (t)

Fig. 1. Configuration of a cantilever beam subject to a vertical base excitation.
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(fixed) frequency in random and such a harmonic excitation in fact is not a pure harmonic one and may be treated as a
narrow-band stochastic process. Thus, the definite overhang or jumping phenomena in their experimental results can be
explained and described using the theory of random vibration and their experimentally investigated jump may be the
stochastic jump in nature.

Currently, there are two kinds of models for the description of narrow-band random excitation. One is the response of
second-order linear filter to Gaussian white noise. The other is the so-called bounded noise. The latter is a harmonic
function with constant amplitude and stochastic frequency and phase, which, to some extent, can be used to describe the
excitation situation where a modal shaker is driven at constant acceleration amplitude and a center frequency with slight
flutter. The bounded noise process was first proposed by Stratonovich [39] and has been used and developed by some
researchers in certain applications [40–47].

Following Ref. [38], in what follows, we use the bounded narrow-band noise to feature the aforementioned narrow-
band random excitation, that is

€zðtÞ ¼ xðtÞ ¼ a cosðOt þ gWðtÞ þ yÞ, (3)

where a and O are the acceleration amplitude and center circular frequency of the base motion , which are constants, gX0
is a intensity, which represents the bandwidth, of the narrow-band random excitation, W(t) is a standard Wiener process,

and y is a uniformly distributed random number in [0,2p]. The inclusion of the phase angle y makes xðtÞ a stationary

process. So xðtÞ is a non-Gaussian distributed stationary stochastic process and has density function pðxÞ ¼ 1=ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

q
Þ,

zero mean value and spectral density function as follows:

SxðoÞ ¼
1

4p
a2g2ðO2

þo2 þ g2=4Þ

ðO2
�o2 þ g4=4Þ2 þo2g4

. (4)

Choosing proper value for a and g, xðtÞmay represent the turbulent flow in the wind, the motion of seismic floor and so on.
The bandwidth of process xðtÞ depends mainly on parameter g. It is a narrow-band process when g is small and a wide-

band process when g is large.
In order to make further comparison with Ref. [12], we nondimensionlize Eqs. (1)–(2) using the characteristic length

ln ¼ L=ln of the beam and the characteristic time tn ¼ ðL=lnÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
as the same as those in Ref. [12], where ln is the nth

root of the characteristic equation 1+cos(ln)cosh(ln) ¼ 0. Let the nondimensional arc length x ¼ s=ln and the
nondimensional time t ¼ t=tn, we have

€vþ �2m _vþ viv ¼ �ðv0ðv0v00Þ0Þ0 �
1

2
v0
Z x

ln

q2

qt2

Z x

0
v02 dx

� �
dx

" #0
� �2½v00ðx� lnÞ þ v0�ð€zb � gbÞ, (5)

where the primes and overdots indicate the derivative with respect to x and t, respectively; v ¼ w=ln, �2m ¼ ctn=ðrAÞ,
�2 €zb ¼ €zt2

n=ln and �2gb ¼ gt2
n=ln are the corresponding nondimensional values of w, c, €z and g, respectively; and e is a small

positive parameter introduced as a bookkeeping device. The associated boundary conditions are

v ¼ v0 ¼ 0 at x ¼ 0, (6a)

v00 ¼ v000 ¼ 0 at x ¼ ln. (6b)

Naturally, the narrow-band random excitation in Eq. (5) can also be rewritten as

€zbðtÞ ¼ ab cosðObtþ gWðtÞ þ yÞ, (7)

where ab ¼ at2
n=ð�

2lnÞ and Ob ¼ Otn are the nondimensional acceleration amplitude and center circular frequency of the
base motion.

In order to analyze the solutions of the nonlinear Eq. (5) subject to the boundary conditions (6), the method of multiple
scales is employed here [25,26,31,32,37,38,48]. Thus, a first-order uniform expansion of the form is used as given below

vðx; T0; T2; �Þ ¼ �v1ðx; T0; T2; . . .Þ þ �
3v3ðx; T0; T2; . . .Þ þ . . . , (8)

where T0 ¼ t is a fast scale characterizing motions with the natural frequencies on and Ob; and T2 ¼ �2t is a slow scale
characterizing the modulations of the amplitudes and phases. Moreover, for a standard Wiener process WðtÞ, because of
E½WðtÞ� ¼ 0 and E½W2ðtÞ� ¼ t, we have

gWðtÞ ¼ ðg=�ÞWð�2tÞ ¼ ḡWðT2Þ. (9)

Substituting Eqs. (7)–(9) into Eqs. (5) and (6) and equating coefficients of like powers of e, we obtain
Order e:

D2
0v1 þ viv

1 ¼ 0, (10a)

v1 ¼ v01 ¼ 0 at x ¼ 0, (10b)

v001 ¼ v0001 ¼ 0 x ¼ ln. (10c)
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Order e3:

D2
0v3 þ viv

3 ¼ �2D0D2v1 � mD0v1 � ðv
0
1ðv
0
1v001Þ

0Þ0 �
1

2
v01

Z x

ln

D2
0

Z x

0
v021 dx

� �
dx

� �0

�½v001ðx� lnÞ þ v01�fab cos½ObT0 þ ḡWðT2Þ þ y� � gbg, (11a)

v3 ¼ v03 ¼ 0 at x ¼ 0, (11b)

v003 ¼ v0003 ¼ 0 at x ¼ ln. (11c)

where Dk ¼ q=qTk.
The general solution of Eq. (10) consists of one infinite sequence of modes corresponding to one infinite sequence of

frequencies and can be expressed in terms of the linear free-vibration modes: that is,

v1ðx; T0; T2Þ ¼
X1
m¼1

FmðxÞAmðT2Þe
iomT0 þ cc, (12)

where cc stands for the complex conjugate of the preceding terms, om ¼ l2
m=l

2
n , and

FmðxÞ ¼
1ffiffiffiffiffiffi
ln

p cosh
lm

ln
x

� �
� cos

lm

ln
x

� �
þ

cos lm þ cosh lm

sin lm þ sinh lm
sin

lm

ln
x

� �
� sinh

lm

ln
x

� �� �� �
.

Here FmðxÞ is chosen to satisfy
R ln

0 F2
mðxÞdx ¼ 1.

Now, our attention is paid to the case where only the nth mode is directly excited and thus it is assumed that there are
not any internal resonances between two modes. Therefore, out of the infinite modes present in n1 and in the present of
viscous damping, only the excited mode will contribute to the long-term response [9–19]. Thus, the non-decaying first-
order solution can be expressed as

v1ðx; T0; T2Þ ¼ FnðxÞ½AnðT2Þe
iT0 þ ĀnðT2Þe

�iT0 �. (13)

Substituting Eq. (13) into Eq. (11a) yields

D2
0v3 þ viv

3 ¼ � 2iFnD2AneiT0 � imFnAneiT0 � ½F0nðF
0
nF
00
nÞ
0�0ðA3

ne3iT0 þ 3A2
nĀneiT0 Þ

�
1

2
F0n

Z x

ln

Z x

0
F02n dx dx

� �0
ð�4A3

no
2
ne3iT0 � 4A2

nĀno2
neiT0 Þ þ ½F00nðx� lnÞ þF0n�gbAneiT0

�
ab

2
½F00nðx� lnÞ þF0n�fAnei½ðObþ1ÞT0þgWþy� þ Ānei½ðOb�1ÞT0þḡWþy�g þ cc. (14)

Similar to Ref. [12], here we restrict our discussion and investigation to the case of principal parametric resonance of nth
mode (i.e., Ob � 2). Thus, the frequency detuning parameter s is introduced to describe the closeness to the nth modal
principal parametric resonance as given below

Ob ¼ 2þ �2s. (15)

According to the definition of the solvability conditions described in Ref. [38], we have

Z ln

0
�iFnð2D2An þ mAnÞ � 3ðF0nðF

0
nF
00
nÞ
0Þ0 � 2 F0n

Z x

ln

Z x

0
F02n dx dx

� �0� �
A2

nĀn

� �
Fn dx

þ

Z ln

0
gbAn½F00nðx� lnÞ þF0n�Fn dx�

Z ln

0

ab

2
Ān½F00nðx� lnÞ þF0n�e

iðsT2þḡWþyÞFn dx ¼ 0 (16)

which yields

�2iD2An � imAn � ð3a1 � 4a2ÞA
2
nĀn þ a3Angb �

ab

2
a3ĀneiðsT2þḡWþyÞ ¼ 0, (17)

where a1 ¼
R ln

0 FnðF0nðF
0
nF
00
nÞ
0Þ0 dx, a2 ¼ 1=2

R ln
0 FnðF0n

R x
ln

R x
0 F02n dx dxÞ0 dx, and a3 ¼

R ln
0 Fn½F00nðx� lnÞ þF0n�dx.

We can find that the forms of a1, a2, and a3 in Eq. (17) are the same as those in Eq. (22) of Ref. [12] and
these corresponding numerical values are given in Table 1 for the first two modes, which are almost the same as those in
Table 1 of Ref. [12] except a1 for the first mode. In fact, if a1 is 0.462 for the first mode in Table 1 of Ref. [12], the
theoretical frequency–response curves in Figs. 3, 5, and 7 of Ref. [12] will be bent to left, i.e., these curves will present
softening effect. For this reason, a1 ¼ 0:462 for the first mode in Table 1 of Ref. [12] must be either a typing error or a
calculating error.

Substituting the polar form

AnðT2Þ ¼
1
2anðT2Þe

i½sT2�ynðT2Þ�=2, (18)
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Table 2
Nondimensional time, gravity acceleration and excitation acceleration.

First mode Second mode

tn 0.1703 0.0272

�2ab
0.0754 0.0064

�2gb
0.6255 0.0399

Table 1
Values of coefficients in modulation equations.

First mode Second mode

a1 0.4962 0.2672

a2 0.3486 0.6996

a3 0.8378 1.8421

Z.H. Feng et al. / Journal of Sound and Vibration 325 (2009) 923–937928
into Eq. (17) and separating the real and imaginary parts, we obtain

_an ¼ �
1
2man �

1
4aba3an sin bn, (19a)

an
_bn ¼ san � ð

3
4a1 � a2Þa

3
n �

1
2aba3an cos bn þ a3gban þ anḡ _W , (19b)

where bn ¼ yn þ gW þ y.

3. Numerical simulation

In what follows, the specimen (i.e., a vertically mounted carbon steel cantilever beam of dimensions 852.42 mm�19.05
mm�0.81 mm (33.56 in�0.75 in�0.032 in)) and the acceleration excitation amplitudes of the base (i.e., a ¼ 1182 mm/s2

(46.53 in/s2) for the first mode and a ¼ 1569 mm/s2 (61.78 in/s2) for the second mode, respectively) experimentally
investigated in Ref. [12] are taken into consideration to make further investigation and comparison. Furthermore, we
assume �2 ¼ 0:1 and �2m ¼ 0:002. Thus, the nondimensional time, gravity acceleration and excitation acceleration
amplitude and the first four natural frequencies with or without gravity acceleration being taken into consideration are
shown in Tables 2 and 3, respectively.

When g ¼ 0 and y ¼ 0, the nonlinear modulation Eq. (19) can be treated as a deterministically excited system and two
possible nontrivial solutions (one branch is stable and another unstable) when ab42m=a3 are given below

an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 2a3gb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaba3Þ

2 � ð2mÞ2
q

3
2a1 � 2a2

vuuut (20)

In Figs. 2 and 3, we show the theoretical frequency–response and force–response curves based on Eq. (20) for the first
mode, respectively, where f ¼ O=2p is the center frequency of the base motion. For all the plotted theoretical curves, solid
lines indicate stable fixed points and dot lines indicate unstable fixed points. As a familiar result, Fig. 2 features the
hardening type, i.e., the theoretical frequency–response curve is bent to the right, indicating that the nonlinear curvature
terms dominate the nonlinear inertia terms for the first mode. In Fig. 3, we can find that the force–response curves, for
instance, curves A and B, may exhibit dual-valued solution (one is stable and another is unstable. In fact, the response is
triple-valued: among them there are one stable nontrivial solution, one stable trivial solution, and one unstable nontrivial
solution) when the excitation central frequencies are greater than an center frequency in the unstable region (for instance,
about 1.377 Hz in Fig. 2), whereas the force–response curves, for instance, curves D and E, can only exhibit stable single-
valued solution when the excitation frequencies are less than the center frequency.

Similar to Figs. 2 and 3, Figs. 4 and 5 show the theoretical frequency–response and force–response curves based
on Eq. (20) for the second mode, respectively. Naturally, we can find that the theoretical frequency–response curve belongs
to softening type, which, results in that the force–response curves, for instance, curves A and B, may exhibit dual-valued
solution when the excitation central frequencies are less than an center frequency in the unstable region (for instance,
about 11.273 Hz in Fig. 4), whereas the force–response curves, for instance, curves D and E, can only exhibit stable single-
valued solution when the excitation frequencies are greater than the center frequency.
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Table 3
First four natural frequencies of the cantilever beam.

With gravity (Ref. [12]) (Hz) Without gravity (Hz)

First mode 0.66 0.95

Second mode 5.69 5.93

Third mode 16.22 16.60

Fourth mode 32.06 32.53

Fig. 2. Frequency–response curves for the first mode when a ¼ 1182 mm/s2 (46.53 in/s2).

Fig. 3. Force–response curves for the first mode.

Z.H. Feng et al. / Journal of Sound and Vibration 325 (2009) 923–937 929
Now, we focus on the case where the excitation is a narrow-band random one. For the method of numerical calculations,
Eq. (3) can be rewritten to be the form as given below

€zðtÞ ¼ xðtÞ ¼ a cosðjðtÞÞ; _jðtÞ ¼ Oþ gBðtÞ; zðtÞ ¼ _WðtÞ.

The formal derivative zðtÞ of the unit Wiener process is a Gaussian white noise, which has the power spectrum of a constant
and is physical unrealized. According to Refs. [49,50], the pseudorandom signal is used for the numerical calculations as
given below

zðtÞ ¼

ffiffiffiffiffiffiffi
4O
N

r XN
k¼1

cos
O
N
ð2k� 1Þt þ fk

� �
, (21)

where fk’s are independent and uniformly distributed in (0, 2p], N is a large integer number and here we chose N ¼ 1000
for the following calculation.



ARTICLE IN PRESS

Fig. 4. Frequency–response curves for the second mode when a ¼ 1569 mm/s2 (61.78 in/s2).

Fig. 5. Force–response curves for the second mode.

Fig. 6. Spectral density of xðtÞ at f ¼ 1.38 Hz with different bandwidths.
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Fig. 6 shows the spectral density of the narrow-band random excitation €zðtÞ when the excitation frequency f is1.38 Hz
(near the center frequency of the unstable region in Fig. 2) with three different bandwidths. From this figure we can find
that the bandwidth of the excitation signal is still very narrow even if g ¼ 0:05.

In Fig. 7, we show the theoretical frequency–response curves and the first-order moment frequency–response data
(curves) numerically obtained from Eq. (19) combined with Eq. (21) for the first mode, where, the initial condition is
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Fig. 7. Theoretical frequency–response curves and the first-order moment frequency–response data with different bandwidths for the first mode when

a ¼ 1182 mm/s2 (46.53 in/s2).

Fig. 8. Theoretical force–response curves and the first-order moment force–response data with different bandwidths for the first mode when (a)

f ¼ 1.34 Hz, and (b) f ¼ 1.42 Hz.
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ða1;b1Þ ¼ ð5:0;0Þ, integrating time is 5000, and calculating time is 2500. The numerical results are also bent to the right.
Also, we can find that the numerical results are at the theoretical stable curve’s heels within the analytical frequency extent
when the bandwidth is very narrow. However, the data (curves) gradually jump from the nontrivial branch to the trivial
one when the excitation frequency exceeds the unstable region and they are obviously bounded with the increase of
bandwidth. It is also more interested in that Fig. 7 is much more similar to Fig. 3 of Ref. [12]

In Fig. 8, we show the theoretical force–response curves and the first-order moment force–response data (curves) for
the first mode when the excitation frequencies are 1.34 Hz (lying in the left-hand side of the unstable region of Fig. 7) and
1.42 Hz (lying in the right-hand side of the unstable region of Fig. 7), respectively. Here, the initial condition is set near
either the stable nontrivial branch or the stable trivial branch, integrating time is still 5000, and calculating time is also
2500. We can amazedly find that Fig. 8(a) is also very similar to Fig. 4 of Ref. [12], where, the excitation frequency is
1.253 Hz and lies in the left-hand side of the unstable region in Fig. 3 of Ref. [12]. In Fig. 8(b), the numerical results closely
encircle either the stable nontrivial branch or the stable trivial branch when the bandwidth is very narrow. With the
increase of bandwidth, jumps occur between these two branches.

Fig. 9 shows the spectral density of the narrow-band random excitation €zðtÞ when the excitation central frequency
f is11.27 Hz (near the center frequency of the unstable region in Fig. 4) with three different bandwidths. From this figure we
can also find that the bandwidth of the excitation signal is much more narrow even if g ¼ 0:03.

In Fig. 10, we also show the theoretical frequency–response curves and the first-order moment frequency–response data
(curves) numerically obtained from Eq. (19) combined with Eq. (21) for the second mode, where, the initial condition is
ða2;b2Þ ¼ ð0:6;0Þ, integrating time is 5000, and calculating time is 2500. The numerical results are bent to the left. Similarly,
from this figure we can find the same phenomena as those in Fig. 7. It is also seen that Fig. 10 is similar to Fig. 9 of Ref. [12].
In Fig. 11, we show the theoretical force–response curves and the first-order moment force–response data (curves) for the
second mode when the excitation central frequency is 11.23 Hz (lying in the left-hand side of the unstable region of Fig. 10).
Here, the initial condition is also set near either the stable nontrivial branch or the stable trivial branch, integrating time is
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Fig. 9. Spectral density of xðtÞ at f ¼ 11.27 Hz with different bandwidths.

Fig. 10. Frequency–response curves and the first-order moment frequency–response data with different bandwidths for the second mode when

a ¼ 1569 mm/s2 (61.78 in/s2).

Fig. 11. Theoretical force–response curves and the first-order moment force–response data with different bandwidths for the second mode when

f ¼ 11.23 Hz.
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still 5000, and calculating time is also 2500. Naturally, it is seen that Fig. 11 is similar to Fig. 10 of Ref. [12], where, the
excitation frequency is 11.05 Hz and lies in the left-hand side of the unstable region in Fig. 9 of Ref. [12]. With the increase
of bandwidth, jumps occur between the two stable branches.
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The main aim we use first-order moment responses in Figs. 7, 8, 10, and 11 is to make comparison with the experimental
results in Ref. [12]. In fact, there may be two more probable motions in the system. The first-order moment response
aforementioned, although it is useful, is a single statistical quantity, which, is not enough to describe the complicated
response, and sometimes the application of first-order moment response depends on the initial conditions, calculating
time, and so on. Zhu et al. [27] thought that the jump of a system under narrow-band random excitation is essentially a
transition of the response from one more probable motion to another or vice versa, and the behavior of the complicated
stationary response of a nonlinear system to random excitation is best described by the stationary joint probability of
variables such as displacement, velocity and so on and is characterized by the number, location, shape and magnitude of
the peaks of the stationary joint probability density.

Eq. (19) is a two-dimensional diffusion process and it is more convenient to solve the FPK equation associated with its
Itô equation to obtain the statistics of the response. Thus, the FPK equation associated with Eq. (19) is of the form [34]

qp

qT2
¼ �

q
qan
½m1ðan;bnÞp� �

q
qbn
½m2ðan;bnÞp� þ

ḡ2

2

q2p

qb2
n

, (22)

where p ¼ pðan;bn; T2jan0;bn0Þ is the transition probability density, m1ðan;bnÞ ¼ �
1
2man �

1
4aba3an sin bn, and

m2ðan;bnÞn ¼ s� ð34a1 � a2Þa
2
n �

1
2aba3 cos bn þ a3gb.

The initial condition of FPK Eq. (22) is

p ¼ dðan � an0Þdðbn � bn0Þ; T2 ¼ 0.

The boundary condition with respect to bn is periodic, i.e.,

pjbnþ2mp ¼ pjbn

@p=@bnjbnþ2mp ¼ @p=@bnjbn
.

The boundary conditions with respect to an is

p ¼ finite at an ¼ 0,

p; @p=@an ! 0; as an !1.
Fig. 12. Stationary joint probability density of the first mode to different bandwidth ḡ: f ¼ 1.41 Hz; a ¼ 1182 mm/s2 (46.53 in/s2); (a) g ¼ 0:005;

(b) g ¼ 0:010; (c) g ¼ 0:015; and (d) g ¼ 0:020.
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Fig. 13. Stationary joint probability density of the first mode to different frequency f: g ¼ 0:01; a ¼ 1182 mm/s2 (46.53 in/s2); (a) f ¼ 1.39 Hz;

(b) f ¼ 1.40 Hz; (c) f ¼ 1.41 Hz; and (d) f ¼ 1.42 Hz.
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In what follows, we mainly focus on the nonlinear dynamics of the first mode of the system to elaborate the corresponding
statistical characters.

Fig. 12 shows a series of change of the stationary joint probability density of amplitude and phase for the first mode to
different bandwidths numerically solved from the FPK Eq. (22) by using finite difference method when f ¼ 1.41 Hz
and a ¼ 1182 mm/s2. Here, we choose f ¼ 1.41 Hz so that the excitation frequency f lies in the margin of the stable region in
Fig. 7. The basic jump phenomena indicate that the most probable motion is around the higher branch when the bandwidth
is smaller, whereas the most probable motion gradually approaches the lower one when the bandwidth becomes higher.

Fig. 13 shows the stationary joint probability density of amplitude and phase for the first mode for four increasing values
of excitation central frequency f (see Fig. 7). It is observed that there is an excitation central frequency value over which the
joint probability density has two peaks: an upper peak and a lower peak. This implies that jumps may occur over the
frequency value where the response is in the region of triple-valued solution. As the value of f increases, the higher peak
decreases while the lower peak increases. This also implies that the higher is the excitation central frequency f, the more
probable is the jump from the higher branch to the lower one once f exceeds the value.

Fig. 14 shows the stationary joint probability density of amplitude and phase for the first mode for four decreasing
values of excitation acceleration a (see Fig. 8(b)). One can find that there is a region of excitation acceleration within which
the joint probability density has two peaks: an upper peak and a lower peak. This implies that jumps may occur in this
region of a values value where the response is also in the region of triple-valued solution. As the value of a decreases, the
upper peak decreases while the lower peak increases. This indicates that the lower is the excitation acceleration a, the more
probable is the jump from the higher branch to the lower one once a lies in the region.

4. Conclusions

The nonlinear integro-differential equations of motion for a slender cantilever beam subject to axial narrow-band
random excitation were proposed and investigated. The method of multiple scales was used to determine a uniform first-
order expansion of the solution of equations. According to solvability conditions, the nonlinear modulation equations for
the principal parametric resonance were obtained.

We numerically obtained the first-order moment frequency–response and force–response data (curves) of the same
specimen as that tested in Ref. [12] when the excitation is a narrow-band random one. Further comparisons between
present numerical data and the experimental results investigated in Ref. [12] have been made. Results show that whether



ARTICLE IN PRESS

Fig. 14. Stationary joint probability density of the first mode to different excitation acceleration a: g ¼ 0:01; f ¼ 1.42 Hz; (a) a ¼ 3.00 m/s2; (b) a ¼ 2.00 m/

s2; (c) a ¼ 1.55 m/s2; and (d) a ¼ 1.40 m/s2.
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the first-order moment frequency–response data (curves) or the first-order moment force–response data (curves) of the
first two modes are all in agreement with the experimental results. From this point of view, the explanation on the
importance of the nonlinear responses of a cantilever beam vertically excited by a modal shaker using narrow-band
stochastic theory is reasonable and effective.

Furthermore, the stochastic jump and bifurcation have been investigated for the first modal parametric principal
resonance by using the stationary joint probability of amplitude and phase to characterize the number, location, shape and
magnitude of the peaks of the stationary joint probability density. Results show that stochastic jump occurs mainly in the
region of triple-valued solution. For the frequency–response domain, if the bandwidth g is a variable, the basic phenomena
indicate that the most probable motion is around the higher branch when the bandwidth is smaller, whereas the most
probable motion gradually approaches the lower one when the bandwidth becomes higher; if the excitation central
frequency is a variable, the basic phenomena imply that the higher is the excitation central frequency f, the more probable
is the jump from the higher branch to the lower one once f exceeds an certain value. For the force–response domain, there
is a region of excitation acceleration a within which the joint probability density has two peaks: an upper peak and a lower
peak. Results show that jumps may occur in this region where the response is also in the region of triple-valued solution.
Concretely, as the value of a decreases, the upper peak decreases while the lower peak increases. Such phenomena indicate
that the lower is the excitation acceleration a, the more probable is the jump from the higher branch to the lower one once
a lies in the region.
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